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In the context of correspondence ghost imaging, we utilize the correlation coefficients to separate the reference 
detector speckle patterns into positive and negative correlated parts. A positive image and a negative image of 
the object are obtained by averaging over corresponding speckle patterns. The visibility and contrast-to-noise 
ratio of the positive image are discussed, and it is found that the latter will reach a maximum by averaging 
over a little less than half of the total number of reference speckle patterns.
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Ghost imaging (GI) has attracted great interest in the 
past decade due to its nonlocal nature. In conventional 
GI, two spatially coherent light beams are used, one is 
a signal beam and the other a reference beam. The for-
mer illuminates an object and is collected by a so-called 
“bucket detector,” which has no spatial resolution and 
measures only the total transmitted/reflected intensity. 
The reference beam that does not illuminate the object 
is measured by a pixel array detector which has spa-
tial resolution. The image of the object is reconstructed 
through spatial intensity correlation measurements. 
The first ghost image was achieved with entangled 
biphoton pairs generated by spontaneous parameter  
down-conversion[1]; and later, theoretical and experi-
mental studies showed that classical light can also be 
used to perform GI[2–8]. Since then, many improved ver-
sions of GI have appeared, such as computational GI[9], 
differential GI[10], and GI via sparsity constraints[11]. 
However, they all have certain shortcomings, in par-
ticular, long data accumulation and processing time 
measurement time due to the second-order correlation 
computation on which they are based.

Recently, a novel GI scheme called correspondence 
imaging (CI)[12,13] was demonstrated by Luo et al. in 
which the intensity values of the bucket detector are 
sorted and divided into two parts relative to the mean. 
The reference speckle patterns are divided correspond-
ingly into two parts. A positive image and a negative 
image of the object are produced by averaging the 
respective speckle patterns instead of correlation calcu-
lations. In this way, the computation time can be greatly 
reduced while the visibility and signal-to-noise ratio 
(SNR) are much improved, especially for the negative 
image. Although the theoretical explanation of this phe-
nomenon is still under debate, it has already been used 
for improving the quality of GI[14,15]. It is well-known 
that the GI performance grows better as the intensity 

fluctuation increases, but the “anti-correlation” shown 
in the negative image is quite counterintuitive.

In this letter, we use the correlation coefficients to 
explain the production of the positive and the negative 
images, and show that the mean of the bucket detector 
signals is not a necessarily best boundary to divide the ref-
erence speckle patterns. An image reconstruction scheme 
based on the statistical average is presented, which agrees 
well with the simulation results. We also investigate the 
visibility and contrast-to-noise ratio (CNR)[16] of images, 
and show that the CNR will reach a maximum when the 
number of reference patterns to be averaged over is less 
than half of the total. This approach also has the benefits 
of high SNR, less data, and simpler computation.

The basic setup for lensless GI is shown in Fig. 1. The 
field from a thermal or a pseudothermal light source is 
separated by a beam splitter into two identical beams. 
In the signal arm, the light passes through the object to 
be collected by a bucket detector. In the reference arm, 
a detector with spatial resolution records the speckle 
pattern, at the same distance from the source as the 
object. In each exposure, the total intensity collected 
by the bucket detector is

Fig. 1. Experimental setup of lensless GI.



 010301-2 

COL 13(1), 010301(2015)  CHINESE OPTICS LETTERS January 10, 2015

coefficient is determined by the bucket detector signal 
( ).i
BI  If ( ) ( ) ,i i

B RI NI T>  the speckle pattern is positively cor-
related with the object, and if ( ) ( )< ,i i

B RI NI T  it is nega-
tively correlated with the object.

From Eq. (1), it can be seen that GI is a process of 
weighted averaging, and the positive correlated speckle 
patterns share bigger weights, so the negative correlated 
speckle patterns are merged in the background and a 
positive image emerges. But if we divide the speckle 
patterns into two parts according to the sign of the 
correlation coefficients and calculate the intensity cor-
relations separately, then we can obtain both positive 
and negative GIs. The numerical simulation results are 
shown in Fig. 2 for a digital object “NSSC,” which is 
300×300 pixels in size with three gray scales (Fig. 2(a)).  
The image reconstructed by correlation calculations 
with all the speckle patterns is shown in Fig. 2(b); the 
positive and negative images reconstructed by correla-
tion calculations with the speckle patterns separated by 
correlation coefficients are shown in Figs. 2(c) and (d),  
respectively. The total number of measurements is 
taken to be 120000.

We now describe how a positive or a negative image 
can be obtained just by averaging over the speckle 
patterns which are correlated either positively or neg-
atively with the object, with no correlation calcula-
tion needed. We treat the positively correlated speckle 
pattern as a linear function of the object mixed with 
noise.

 ( ) ( ) ( ) ( ),i
RI x kO x e x+ = +  (7)

where the subscript + denotes positive correlation, k is  
a proportionality coefficient, and e(x) is the noise. Sup-
pose the noise at different pixels is independent and 
identically distributed. The standard variance of the 

 ( ) ( )( ) ( ),i i
B R

x
I I x O x= ∑  (1)

where I (i)R(x) is the speckle pattern on the reference 
plane for the ith measurement, O(x) is the transmis-
sion function of the object. After a total of M measure-
ments, the image can be obtained from the second-order 
 correlation

 ( ) ( )

1

1( ) ( ).
M

i i
B R

i
G x I I x

M =

= ∑  (2)

In imaging processes, a correlation coefficient is com-
monly used to evaluate the comparability of two 
images[17], which are usually expressed by matrices. The 
correlation coefficient between two matrices A and B is 
defined as

 
2 2
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A B

A Bs
r

s s
=  (3)

where σ(A, B) is the covariance between A and B, and 
σA

2 and σB2 are the variances of A and B, respectively. 
The correlation coefficient has a range of values from 
-1 to 1, and 0 is the boundary between positive and 
negative correlations. If 0 < ρ < 1, A and B show a 
positive correlation, which means A is similar to B, and 
if -1 < ρ < 0, A and B show a negative correlation, 
which means A is similar to B but with its gray value 
inversed. The correlation coefficient ρ will have a maxi-
mum value of 1 when A can be expressed as a linear 
function of B.

Substituting Eq. (1) and the transmission function 
of the object O(x) into Eq. (3), we obtain the correla-
tion coefficient between the object transmission func-
tion and the speckle pattern recorded in the reference 
arm for the ith measurement

 
( )

( )

( ) ( )

2 2
( )

1 1 1( ) ( ) ( ) ( )
,i

R
i

R

i i
R R

x x x
I O

oI x

I x O x I x O x
N N N

s
r

s

−
=

∑ ∑ ∑
 (4)

where N is the total number of pixels that the object 
would cover on the reference detector. The speckle pat-
terns produced by thermal light or pseudothermal light 
obey a negative exponential intensity distribution, in 
which the relationship between the variance and the 
average intensity of the speckle pattern is[18]

 ( )

2
2 ( )

( )
,i

R

i
RI x

Is =  (5)

where ( ) ( )1 ( )i i
R R

x
I I x

N
= ∑  is the average intensity of the 

speckle pattern ( )( ).i
RI x  Consequently, the correlation 

coefficient between the object transmission function 
and the speckle pattern is given by
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where 1 ( )
x

T O x
N

= ∑  is the transmission ratio of the 

object. The above expression shows that the correlation 
Fig. 2. Numerical simulation of positive GI and negative GI: (a) 
object, (b) conventional GI, (c) positive GI, and (d) negative GI.
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noise will decrease with the number of measurements 
according to

 1 ,e eM
s s=′  (8)

where σe and σ ́e are the standard variances of the noise at 
a pixel before and after averaging, respectively. Thus, the 
process of speckle pattern averaging can be seen as a pro-
cess of noise elimination. After averaging the positively 
correlated speckle patterns, the noise at different pixels 
should become a uniform background so we can obtain
 ( ) ( ) ( ) ,i

RI x kO x e+ = +  (9)

where ( ) ( )

1

1( ) ( ),
M

i i
R R
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I x I x

M

+

+ +
=+

= ∑  M + is the total num-

ber of the positively correlated patterns and e  is the 
expected value of the noise. We then obtain the relation

 ( )( ) ,i
BI TN k e+ = +  (10)

where ( ) ( )
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= ∑  is the mean of bucket detec-

tor signals which show positive correlations, and

 ( ) ,i
RI Tk e+ = +  (11)

where ( ) ( )1 ( )i i
R R

x
I I x

N+ += ∑  is the average intensity 

of the positive image. Substituting these relations into 
Eq. (9), the expression for the positive image can be 
obtained as
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 (12)
In the same way, the negative image of the object 
can be derived by averaging the negatively correlated 
speckle patterns
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where the subscript – denotes negative correlation, and 
O ′(x) = 1 - O(x) is the inversed object function. We 
note that Eqs. (12) and (13) are obtained just by sta-
tistical averaging, and are different from the previous 
reconstruction model of Luo et al.[13]. The numerical 
simulation results of the positive and negative images 
are shown in Fig. 3. The object is the same as that of 
Fig. 2(a). The positive and negative images retrieved 
just by averaging the speckle patterns separated by cor-
relation coefficients are shown in Figs. 3(a) and (b),  
respectively. For the positive image, k = 1.8166, 

21.3706e =  in theory, and k = 1.7603, 21.4552e =  
in simulation. For the negative image, k = 1.7025, 

19.8289e =  in theory, and k = 1.6591, 19.8849e =  
in simulation. The numerical simulation results agree 
well with the above theory.

For the positive image in CI, the visibility is defined 
as[13]
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Substituting Eq. (12) into the above expression, we 
obtain
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For a large number of measurements, we assume that
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We can  see that the numerator of the visibility is 
related to the mean correlation coefficients of the posi-

tive patterns, namely, ( ) ,i
RI O

r
+

 so if the patterns have 
larger correlation coefficients, the positive image will 
have better visibility.

To evaluate the quality of the image, the CNR is 
used. For simplicity, we just consider a binary object, 
and assume that the variance of the noise is the same 
as that of the speckle pattern. Then, the CNR of the 
positive image should be

 
( ) ( )

2

(1) (0)
CNR .

2

i i
R R

e

I I

s

+ +
+

−
=

′
 (17)

Substituting Eqs. (8) and (12) into the above expres-
sion, we obtain
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Thus, the CNR of the positive image is given by

 ( )

2

CNR .
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M o
T T

s
r

+
+ =

−
 (19)

Fig. 3. Numerical simulation of CI: (a) the positive image, and  
k = 1.8166, 21.3706e =  in theory; k = 1.7603, 21.4552e =  
in simulation and (b) the negative image, and k = 1.7025,  

19.8289e =  in theory; k = 1.6591, 19.8849e =  in 
 simulation.
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the threshold of the bucket detector signal so that we 
average over those speckle patterns which have larger 
 correlation coefficients, but then the number of pat-
terns will be reduced which will decrease the CNR. 
There is a maximum for CNR+ when the threshold is 
a little higher than the mean bucket signal, and we 
can see that the reconstructed image with a maximum 
CNR is obtained by averaging over a number of speckle 
patterns a little less than a half of the total.

In the same way, we can obtain the visibility and 
CNR of the negative image as
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A better visibility of the positive image will be achieved 
if the patterns have smaller correlation coefficients. 
There is a maximum for CNR– when the threshold 
is a little lower than the mean bucket signal. The 
 corresponding analysis will not be presented here, since 
it is similar to that for the positive image and would 
not add much insight.

In conclusion, we present a newly modified nonlocal 
imaging technique called CI based on correlation coeffi-
cients, in which the correlation coefficient is utilized to 
separate the speckle patterns into positive and negative 
correlated parts. The positive and negative images of 
the object are obtained just by averaging the respective 
speckle patterns. In this method, only less than a half 
of the total speckle patterns need to be used to obtain 
a maximum CNR. Compared with conventional GI, the 
computation time is greatly reduced, which is a partic-
ular advantage when the images are large. It is hoped 
that this correlation coefficient-based CI technique may 
be incorporated into real applications.

For an object with binary transmission we have
  σo

2 = (1 - T)T, (20)
so Eq. (19) becomes
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In Refs. [12,13], the mean of the bucket detector inten-
sity measurements was taken as the boundary to divide 
the speckle patterns. A comparison between the profiles 
obtained by CI and correlation coefficient-based CI is 
shown in Fig. 4. It can be seen that the latter does 
indeed show improvement, with a visibility and CNR 
of 0.0422 and 4.7934 compared with 0.0585 and 5.2397, 
respectively, of the former.

To analyze the CNR of CI with a finite sampling 
number, we make a simplified but reasonable assump-
tion: the intensity at each pixel is independent and 
identically distributed. Under this assumption and the 
central limit theorem, the bucket detector signals obey 
Gaussian distribution with the expected value NTIe 
and variance NTI 2e, where Ie is the expected intensity 
value at each pixel. We then have ( ) ( ) ,i i

R BNI T I=  so 
the mean intensity of the bucket detector can be taken 
as the boundary to divide the speckle patterns into two 
parts, each part containing Mt/2 patterns, where Mt is 
the total number of speckle patterns. Then the expres-
sion for the CNR of positive image is given by 
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where μ = NTIe and σ 2 = NTI 2e, and 
BI

M  is the num-
ber of speckle patterns selected by the threshold IB. A 
plot of this CNR+ as a function of the bucket detector 
threshold IB, up to 1.1NTIe is shown in Fig. 5, where 
we have taken Ie = 20, Mt = 20000, N = 10000, and  
T = 0.2. From the curve, we can see that we can elevate 

Fig. 4. Comparison between the image profiles of (a) CI and (b) 
correlation coefficient-based CI. The binary object is opaque 
except for a transparent rectangle in the center. The profile 
of CI with visibility 0.0422 and CNR 4.7934 is shown in (a). 
The profile of CI based on correlation coefficient with visibility 
0.0585 and CNR 5.2397 is shown in (b).

Fig. 5. Plot of CNR as a function of the threshold of the bucket 
detector signal.
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